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Process of stripe formation is analyzed numerically in a binary mixture. The system consists of particles of
two sizes, without any direct mutual interactions. Overlapping of large particles, surrounded by a dense system
of small particles, induces indirect entropy driven interactions between large particles. Under an influence of an
external driving force the system orders and stripes are formed. Mean width of stripes grows logarithmically
with time, in contrast to a typical power law temporal increase observed for driven interacting lattice gas
systems. We describe the mechanism responsible for this behavior and attribute the logarithmic growth to a
random walk of large particles in a random potential created by the site blocking due to the small ones.
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I. INTRODUCTION

Binary mixtures subject to an external driving force are
often found to segregate and form stripes whose width is
increasing with time �1–4�. Separation of mechanically agi-
tated mixtures of different characteristics has important prac-
tical applications in the processing of granular materials in
chemical or pharmaceutical technology. Much theoretical
and experimental work has been done in order to understand
the main mechanisms responsible for these processes �5–10�.
The simplest and best known model for stripe formation un-
der external driving force is a simple lattice gas with attrac-
tive nearest neighbor interparticle interactions �11–13�. Re-
cent experiments �14–16� have rejuvenated interest in that
model.

In this paper we propose a model for a stripe formation in
a lattice gas model with two kinds of particles, which gener-
alizes the standard driven one-component model. As we shall
see the presence of the second particle component modifies
the time evolution of the system considerably. When two
types of particles differ in their sizes, the entropy driven
phase separation might occur and no direct interaction be-
tween particles is necessary for particles to cluster �17–19�.
In our model we assume existence of two lattice gas compo-
nents consisting of small and large particles which occupy
one or more lattice sites depending on the specific rules
which might allow for particles to overlap. Specifically, we
assume that small particles occupy one lattice site and do not
share it with other small and/or large ones, while large par-
ticles extend over five lattice sites and are permitted to over-
lap. This rule leads to the blocking phenomenon for small
particles which in turn results in an effective interaction be-
tween large particles �18,19� and the system orders at high
enough densities. This ordering happens because the large
particles perform the random walk in a random potential. A
jump of the large particle can occur only when there is
enough free space in a chosen direction, the latter being a
random event. We will show that this difference from the
conventional driven lattice gas is sufficient to result in a
different time growth of the stripes than that described in the
previous literature �7,12�. Indeed we shall show that the
mean stripe width in our model increases logarithmically
with time.

II. STRIPE FORMATION IN THE BINARY SYSTEM

Stripe formation can be easily observed in a simple lattice
gas model with nearest neighbor attractive interactions. It has
been shown �11–13� by means of Monte Carlo �MC� simu-
lations that such a system orders in stripes under an influence
of external driving force. When the evolution starts from
some random particle configuration, stripes are formed: Ini-
tially they are thin; they gradually become thicker. This pro-
cess, described and analyzed in detail in Refs. �5–9�, occurs
in two stages—stripe formation and then stripe growth. The
mean width of stripes grows typically as a power of a simu-
lation time tx �where time is measured in the number of MC
steps�. Typically, two different powers x=1 /3 and x=1 /4 are
observed depending on the system size and the simulation
time �7�.

In this paper we will study the segregation process in a
binary mixture of noninteracting particles. The system con-
sists of large objects occupying five lattice sites each and a
large number of small objects occupying one lattice site only.
Double occupancy of the core site in the middle of a large
particle is forbidden, while the other four sites can be shared
with other large ones. Small particles occupy one site and
cannot share it with any other particles. When large particles
overlap they leave more free sites for small particles so the
“phase space,” i.e., the number of possible configurations for
that species, increases. This effectively creates attractive
forces between large particles due to higher entropy of mac-
rostates with overlapping particles. This is why the system
orders forming stripes, when driven by either the periodic in
time or static external force.

The kinetics of our model follows the rules differently for
large and small particle species in our lattice gas. To execute
a jump for a large particle we first choose randomly one of
four possible lattice directions. Then occupation of sites at
each of these directions is checked. The particle moves only
if other particles �large or small� do not block it. The large
particles move randomly with the same jump probability in
each direction. Once the direction of the jump is selected and
it is not blocked then the probability of a jump is always set
to p=1. That holds also if there is an external force—a bias
applied to the system. The jump probability p is independent
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of the direction of the bias. For small particles the situation is
different. The biasing field determines the jump rate and that
influence is measured by the parameter b. Specifically, when
a small particle tries to jump it checks whether the direction
of the jump is not blocked. If it is not and it happens to be in
the direction of the bias field then the jump probability is set
to p=1. If that direction is opposite to the bias field than the
jump probability is set to b−2. If the jump direction happens
to be perpendicular to the bias field, then the jump probabil-
ity is set equal to b−1. We found it proper to use b=5 in most
of our analysis. Figure 1 presents the jump rules for large and
small particles. To analyze the time evolution of our model
we have studied systems of different lattice sizes under the
periodic boundary conditions applied in both system direc-
tions. In each sample the number of large particles N is kept
fixed. We allow the number of small particles to change;
therefore, we have been able to study both closed and open
systems, respectively. The system is closed when the number
Ns of small particles is kept constant, which means that free
volume increases during stripe formation. To study the open
system we allow small particles to adsorb and desorb in such
a way that their mean density �s is kept constant. Such a
possibility is realized in one additional step per site during
the simulation process. To keep the small particles density
constant we apply the following procedure: We choose a
random lattice site. If it is empty we put there an additional
small particle with the probability pA=0.01�s. That is an act
of “adsorption.” If the chosen lattice site is already occupied
by a small particle we remove it �desorption� with the prob-
ability pD=0.01�1−�s�. The adsorbed particle continues then
to jump following the standard rule for small particle jump
as shown in Fig. 1. The coefficient 0.01, in definition of pA
and pD, makes adsorption and desorption processes much
slower than the particle diffusion over the lattice plane.

Although there is no direct �that is mediated by the force
fields� interaction between particles of our binary mixture the
constraints described above on the occupation of the lattice
sites by large and small particle results in the fact that the
particle configurations in which large particles are closer to
each other occurs with relatively higher probability. It has
been shown in Refs. �18,19� that this fact allows us to map
our model onto an Ising model with an effective nearest-
neighbor interaction. Strength of this effective interaction de-
pends on the density of the small particles �s. The strength of
this interaction increases with the density �s and, eventually,
at critical density, a phase transition occurs. This effective,
entropic in origin, interaction together with the biasing field
leads to a formation of stripes parallel to the external bias
field. As we observe, systems that are studied here form

stripe structure when density is over �s
c�0.69. In Fig. 2 we

have shown snapshots of our binary mixture configurations
drawn at various time steps. Here and in what follows time is
measured in the number of the Monte Carlo steps leading to
that configuration.

For a closed system, increasing fraction of �unoccupied
by either particles� free space is a signature of an ordering
process. Ratio m of the number of free sites to the total
number of sites as a function of time t is plotted in Fig. 3. At
t�104 the curve shows a steplike structure. Each step lasts a
relatively long period of time �note logarithmic time scale in
the main panel of Fig. 3� during which the number of stripes

FIG. 1. Jump rules for large �left� and for small �right� particles.
White sites can be shared by overlapping large particles. The exter-
nal bias b affects the jump rates of small particles only.
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FIG. 2. Successive stages of separation of large �dark� and small
�light� particles. Free sites are visible as white spots. The biasing
field is parallel to the shorter side of the system. System size is
�25�250�. It is populated by 500 large and 3972 small particles
and closed, i.e., number of particles, both large and small, does not
change during simulation. The initial free sites fraction is 0.01.
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FIG. 3. Fraction of free sites m in the closed system as a func-
tion of time for one sample. System size is �25�250� sites popu-
lated by 500 large and 3972 small particles. The initial free sites
fraction is 0.01. Inset presents the part of data with step structure in
linear scale.
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does not change. These steps can be observed when there are
only a few stripes present in the system. When a new step
shows up at the curve in Fig. 3 it indicates that one of the
spatial stripes disappears. For open systems, density of small
particles, hence also averaged number of free sites in the
system, is constant. Average number of stripes decreases
with time t and their average width l�t� increases with time,
as seen in Fig. 4.

Similar to Refs. �6,7� we observe two stages of stripe
width growth. The first stage begins when clusters of large
particles coarsen and ends when individual stripes length be-
comes comparable to the system size and a multistripe struc-
ture becomes clearly visible. The second stage begins when
the stripes are already well formed and continues when the
stripes are merging together. Two consecutive evolution
stages of the stripes in the closed system are shown in Fig. 3
and correspond to gentle and steep slopes of the graph. We
conclude from that figure that for closed systems the number
of unoccupied sites increases with time during stripe growth
and subsequently saturates reaching maximum when the sys-
tem finally separates into two parts. In open systems the
number of free sites fluctuates around constant mean value,
whereas the number of small particles increases up to its
maximal value in a completely phase separated system.

We now show results of our Monte Carlo simulations for
closed and open systems, of various width-to-height ratio

and for different numbers of large particles and varying num-
ber of small particles in closed systems. For open systems
the small particles are kept at varying particle densities. For
each system we analyze, we have averaged the results over
the sample of 100 different realizations. In each of those
realizations the initial distribution of the large particles was
randomized allowing those particles overlap. Subsequently,
we placed small particles over a fraction of the remaining
empty lattice sites again at random. Having generated the
particular arrangements of the large and small particles, we
have turned on the bias field and performed the usual Monte
Carlo simulation procedure. In the analysis of the results we
compared data obtained for closed systems, with a fixed
number of small particles, with those for the open systems of
fixed external potential controlling the small particle density.
Formation of structures was monitored at two different real-
izations of the bias field: The static one and the one whose
direction was changing periodically with time. The rate of
stripe formation was highest for a constant field, and it de-
creases with an increasing frequency of the field variation.
The results do not change qualitatively until a frequency of
around 1/5 �MC steps� is reached, above which stripes for
each of the configuration of particles stop to form at all. For
that reason most of our results shown here are for constant in
time driving force.

To find an average width of the stripes for a given con-
figuration of particles, a correlation function

fc�r� = �
1

2N
��i,j� ninj for �r� = 0,

1

4N
��i,j� ninj for �r� � 0	 �1�

was evaluated where �r� is the distance between ith and jth
site along the direction perpendicular to the external field and
ni ,nj =0,1 are the occupations of ith and jth site, respec-
tively. ni is equal to 1 when the site i is occupied by one or
more large particles and ni=0 otherwise. N is the number of
large particles. In Eq. �1� the sum runs over all sites whose
perpendicular to stripes coordinates differ by �r�. The average
width of the stripes is that value of �r� at which the correla-
tion function fc�r� has the first minimum.

The analysis of our simulation results indicates that the
mean width of stripes grows as a logarithm of time indepen-
dently of the system size. This is shown in Fig. 4. This figure
contains results grouped in seven data sets. Six of them refer
to the presently studied two-component systems and the sev-
enth one, shown for comparison, is for the one component
system, described in Refs. �12,13�. The main panel in Fig. 4
shows the mean width of stripes l as a function of log�t�.
Three lower data sets, labeled with �, +, and �, represent
results obtained for systems with a fixed number of small
particles. The remaining data sets labeled with �, �, �, and
� represent results for open systems, with fixed external
potential, shown in the center of the figure.

In each of these graphs the stripe width l was rescaled by
a factor � chosen such that each data set lies on the same line
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FIG. 4. Rescaled mean stripe width d=�l as a function of re-
scaled time for closed, open, and interacting systems in log-linear
�main panel� and log-log plots. See text for explanations for scale �;
a is a lattice constant.
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d = �l = log
 t

�L�
� , �2�

where L� is the system width, parallel to stripes �L� =25 was
chosen as in Fig. 2�. Two different values of the coefficient �
were used to shift the data without changing the slope of the
plot. We have chosen �=10 for closed and �=1.4 for open
systems. The scaling factor � in Eq. �2� depends on the den-
sity of the free sites m=NV / �L�L��. Since for open systems
NV changes in time we have used for m its mean value from
the second stage of the stripe growth. For closed systems
�=
maveraged /4, and for open systems �=
maveraged /2.8.

In all our simulations we have used systems with different
sizes labeled with ���—�100�50�, �+�—�100�25�, and
���—�250�25�. The number of large particles were N
=600, 300, and 781, respectively. At the beginning of simu-
lation small particles occupy 99% of available space; then
the number of free sites increases �see Fig. 3�. For open
systems shown in Fig. 4 the size of each of them is �100
�25�, N=300 and the external potential was chosen such
that the small particle mean density is equal to 80% � �full
squares�, 85% � �open circles�, 90% � �full circles�, and
95% � �triangles� of the number of sites available to them at
any time.

The upper set labeled by inverted triangles � represents
the stripe growth for a one-component interacting driven sys-
tem at a temperature 0.8Tc

�, where Tc
�=3.18J /kB �where J

=1 is interaction strength� and jump probabilities: p=1 in the
direction of field, p=0 in the opposite direction, and p
=exp�−cJ /T� in the direction perpendicular to the field,
where c is the number of nearest neighbors. As shown in
Refs. �6,7�, in such a system the width of the stripe increases
as t1/4 or t1/3 �cf. inset in Fig. 4�. The curve labeled with �
shows the stripe growth proportional to t1/4 at the early stage,
which changes behavior to t1/3 at the later stage.

With those results plotted next to each other we can com-
pare the behavior of the one-component interacting and
driven system with the behavior for noninteracting similarly
driven system results. As shown in Fig. 4 the stripes are
formed for each of those systems but the third mode of
growth is quite different. In contrast to the power law growth
observed for interacting systems the stripe growth in the bi-
nary mixture case, caused by the entropic interactions, is
much slower and indeed logarithmic. Ordering in the binary
system happens due to the indirect, effective attractive inter-
action between particles. Strength of this entropic interaction
decreases with increasing number of free sites �18�. That is
exactly the reason why for the closed systems the effective
interaction between particles decreases �cf. Fig. 3� To see
how the change of the strength of effective interactions af-
fects the stripe growth, we have checked the behavior of the
open systems in which the mean number of small particles
was controlled by fixing those particles chemical potential.
In that case when a stripe is formed more small particles can
be absorbed to the system due to the fixed value of their
chemical potential. The effective interaction between large
particles changes then in a fashion different from the closed

system case. As shown in Fig. 4, however, the time depen-
dence in an open system has the same logarithmic character
observed for the closed system.

We conclude, therefore, that the crucial feature of the ob-
served time evolution for the stripes is the existence of two
different kind of particles. In order to cross an interstripe
distance, large particles have to find their way through
densely packed small ones. To execute a jump, the large
particle has to wait until a channel opens for it in the cloud of
the small particles filling the space between the large particle
and the stripe. A passing stream of small particles creates a
hole, large enough to fit in. As a waiting time for a jump in
such case varies from one event to the next, we can treat
such a process as a random walk in a random potential. In
the next section, we show that the logarithmic character of
the temporal stripe width growth can be explained by such a
description of large particles kinetics.

III. MECHANISM OF STRIPE GROWTH

Stripe growth is an anisotropic process that takes place in
the driven systems. The main course of growth happens
along the direction perpendicular to stripes. Existence of the
second dimension controls relative probabilities of several
mechanisms that compete in the stripe growth process. This
process in a one-component system has been analyzed and
explained in detail in Refs. �6,7�. Reference �7� describes two
different competing mechanisms: Evaporation and condensa-
tion of particles from the surface of the stripe and diffusion
of particles and holes between interfaces. The former one
leads to l� t1/4 and can be observed at earlier times or for
shorter systems, whereas the latter leads to the l� t1/3 growth
and is activated at later stages of stripe formation or in longer
systems.

Let us consider a one-component system with particles
attracting each other. The system orders under influence of a
static bias field, initially forming many thin stripes. When the
process continues some of the stripes disintegrate while the
remaining ones become thicker. Stripe extinction is a random
process consisting of a single particle action: A particle
evaporates first from the stripe wall, then walks randomly in
an empty space until it readsorbs at the same or the other
wall. The process continues until the stripe disintegrates. De-
cay of one of two neighboring stripes is a problem similar to
that of the gambler ruin �20�. We are interested in the mean
time of ultimate decay of the one of two neighboring stripes.
This time is proportional to the mean time of evaporation of
one particle row across a given stripe. The number of par-
ticles in such a row is proportional to the width of the stripe
and fluctuates as particles escape from and come back to the
stripe. The occurrence of a fluctuation of size l means that a
row of such length disappears. The mean time � for such an
event scales as l2. Fluctuations occur independently in each
row, so the time in which the entire stripe disappears is pro-
portional to the number of rows in one stripe, L�, and to the
time �0 needed for a single particle to pass the distance from
one stripe to another. If the distance between stripes becomes
longer, in the space of stripes there is more than one large
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particle per row. Thus mean time between the events, when a
large particle reaches the stripe, becomes shorter. It should
be corrected by the mean number of large particles in empty
space per row n0. The number n0 will be set to 1, as long as
there is one or no particles between stripes, and for higher
densities n0�s. Thus we write

� = 	
1

n0
L��0l2, �3�

where 	 is an overall time scale parameter.
Consider now the mean first-passage time of a distance

between stripes by a particle �0. In the general case of an
inhomogeneous potential the first-passage time is given by
�21,22�

�0 = �
n=0

s−1
1

pn
�
k=n

s−1

�
j=n

k
qj

pj
, �4�

where pj is the jump rate from site j in the direction pointing
from the initial site 0 to the final site s and qj is the jump rate
in the opposite direction. The mean distance between stripes
depends on the density of large particles � in the system and
can be written as s= l�1−�� /�. For the one-component sys-
tem we can assume that pj =qj in Eq. �4� and that pj are the
same for all j=1, . . . ,s except when j=0 for a jump origi-
nating at a site neighboring the stripe. The rate p0 is a prob-
ability rate for a jump of one of the particles that are neigh-
bors. The particles attract each other, so this rate is smaller
than all others: p0
 p1. We can write

�0 �
s

p0
+

s2

p1
�5�

and treat p0 as an effective rate averaged over many jumps. If
p0 / p1
s, then the second term of Eq. �5� dominates. For
larger value of s we use n�s and

� � 	
s

p1
L�l2. �6�

Equation �6� is valid if the density of particles between
stripes is higher than one particle per row but is still quite
low. For higher densities, however, pair interactions in the
empty space start to play a role, causing the entire process to
slow down even more.

A stripe of width l disappears in time � given by Eq. �3�
which means that all its particles move to other still existing
stripes. Hence the mean speed of the equation of motion for
the stripe growth is equal l /� and the stripe growth can be
written as

dl

dt
=

l

�
=

n0

	L�l�0�l�
. �7�

The solution of this equation for �0 given in Eq. �5� and n0
=1 is

�1 − ��l3

3p0�
+

l4�1 − ��2

4p1�2 �
t

L�

. �8�

The exponent of the power law growth of l changes between
1/3 and 1/4. When n�s and Eq. �6� is used, we get

l � 
 t

L�
�1/3

, �9�

i.e., the power law time dependence with a single exponent
x=1 /3 �7�. For higher temperatures when particle density
between stripes becomes higher, various values of exponent
x, usually smaller than 1/3, are observed. Still, l� t1/3 is a
dominant behavior for a wide range of temperatures and sys-
tem geometry parameters.

When the system consists of two different types of par-
ticles, random walk from one stripe to another is not free.
Each particle has to wait until there is enough space for it to
jump. We can treat the process of particle motion in a dense
medium as a random walk in a random potential landscape.
A jump to the left with rate pl and jump to the right with rate
pr are in this approach independent events, occurring accord-
ing to the same probability distribution. Such a model leads
to the following expression for the mean first-passage time
�21�

�0 �
2���s − 1�

�� − 1�2 � e�l, �10�

where

� = �pl�� 1

pr
� � 1, �11�

with � � being an average over random variable realizations.
Thus all linear in s terms in expression �10� are irrelevant for
large s and we get �=log����1−�� /�. Using now Eqs. �3�
and �10� and n0�s we get the following equation:

dl

dt
�

e−�l

L�

. �12�

Its solution for large l and t can be written as

l � log�t/L�� �13�

and, indeed, such character of the time dependence is ob-
served in Fig. 4 for binary systems. It can be seen in the inset
of Fig. 4 that the power law cannot be fitted to the data sets
for binary mixtures. The character of stripe growth is the
same for a closed system, where the number of free sites
increases, as it is for an open system with constant density of
small particles controlled by external potential.

IV. SUMMARY

We have investigated a binary mixture system driven by
an external force. Particles in this binary system do not in-
teract with each other directly but they effectively do so via
indirect entropic interaction. In binary systems large particles
travel among densely packed small particles, which effec-
tively slows down their wandering. The system orders form-
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ing stripes, like a driven single component system with at-
tractive forces.

The existence of two different particle types in the pre-
sented system leads to the logarithmic temporal growth of
the mean stripe width. Such time dependence is slower than
the power law temporal growth in an interacting one-
component system.
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